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Abstract-The method of the inversion of linear dist~but~ dynamic systems is developed which allows 
one to conduct a qualitative study and to obtain an analytical solution of a certain class of inverse heat 
conduction problems. As an illustration of the general approach, the inverse problem of recovering the 

time-varying component of an internal heat source is considered. 

1. INTRODUCTION 

THE PROBLEMS of the inversion of linear distributed 
dynamic systems (DSs) are connected with the re- 
covery of inputs of a DS from the measured function- 
als being determined in instantaneous states of the 
system. Interpreted in the~ophysi~l terms, these are 
the problems concerned with the recovery of time- 
varying internal and boundary conditions of heat 
transfer : external heat fluxes, volumetric sources, etc. 
The common approach to the solution of such inverse 
problems (IPs) consists in their reduction to the first- 
kind Volterra equations with subsequent application 
of regularization techniques [l, 21. The other for- 
malism is based on the inverse system being pre- 
liminarily represented in the space of states. This rep 
resentation also presupposes the use of regularization 
techniques, but alongside makes it possible to answer 
a number of questions of qualitative character: to 
divide the inverse system into correct and incorrect 
parts ; to determine whether the correct part of the 
inverse DS is stable over an infinite time interval ; to 
indicate the least volume of prior information about 
initial conditions which would be sufficient to recover 
the inputs. 

Two techniques are now available for constructing 
distributed inverse systems : the method of structural 
factorization [3-S] and the method of recalculation of 
boundary conditions [6-S]. In this paper, the method 
of structural factorization is developed in application 
to the solution and qualitative investigation of an IP 
concerned with determining the function of internal 
heat sources. 

2. STATEMENT OF THE PROBLEM 

First, the statement of the problem of DS inversion 
will be given in the form which allows one to cover a 
wide class of IP. 

Using the methods of functional analysis, a linearly 
distributed system can be described [9] by a system of 
equations of the form 

:I aw 
R w, = Aw+Bu(t), w(0) = wo, w, = ;iii 

I y(t) = Rw 

where w is the state of the DS Q; u(t) and v(t) are 
the input and output; A : H -+ H the infinitesimal 
operator of the semigroup eA’ of class Co [9] acting in 
a Hilbert space of states of the DS a; B: U -+ H the 
linear operator determined over the space U of input 
values ; R : H + Y the linear operator which charac- 
terizes the manner in which the state of the DS R is 
observed ; Y the space of output values. 

For the given initial state w. the system R induces 
the input/output map 

y(t) = ReA’w,+R 
5 
'eAcr-@ Bu(s)ds. (1) 
0 

The problem, which leads to the concept of an inverse 
DS, consists in the recovery of the input u(t) over the 
given time interval [0, to] (to < co) from the measured 
output y(t) over the same time interval. The DS W’ 
is the inverse to the DS $2 when it recovers the input 
B(Z), ZE [O, t] by the output y(t), to 10, t] of the system 
n. 

The abstract statement of the problem of DS inver- 
sion will be specified on the example of an IP con- 
cerned with the dete~nation of the time-va~ng 
component of an internal heat source from measured 
temperatures at a certain inner point of a thermal 
system. The corresponding direct DS in a one-dimen- 
sional, linear approximation has the form 

i 
c(x) T, = (Q)Ik)~ + Wu(0, W, 0) = T,(x) 

R,: 
l,r= ~(O,~)cos~-~(O)~~(O,~)sinff = 0 (3) 

l2 T s T(Z, t) cos /I - l(r) T,(l, t) sin /3 = 0 (4) 

y(t) = T(x,, I) E 
s 

i5(x--x,)T(x, t) dX. (5) 
0 
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NOMENCLATURE 

b(x)u(t) power density of volumetric heat 
sources 

c(x) specific heat 
F infinitesimal operator of dynamic 

systems (DSs) R- ‘, C2, ’ 
G Green function of DS 0,’ 
H Hilbert space of states of DS LI 
L,(O, I; c(x) dx) Hilbert space of functions 

the square of which can be integrated 
over segment [0, r] with measure 
c(x) dx (space of states of DSs R ,, C2,) 

r(x) weight function 

II4 norm of function r, J(r, r) 
T temperature field (state of systems 

fi,,%) 
t time 

u(t) input of DSs D, z2,, Cl, 

(D, z) scalar product of functions C, z in space 
L,(O, I; c(x) dx), r0 v(s)z(s)c(s) ds 

Mi state of DS CI 

;o, 

space coordinate 
output of DSs R, D,, Cl,.. 

Greek symbols 

l(x) thermal conductivity 
p ,, p2,. eigenvalues of DS 0,’ (spectrum 

of operator F) 

conjugate-complex value of p 
k abstract linear dynamic system 
D ,, CI, systems describing direct heat 

conduction problems 
W system inverse to DS Sz 
R; ’ system inverse to DS 0,. 

For the DS R, the generating operator A acts in the 
Hilbert space H = L,(O, I; c(x) dx) of functions the 
square of which can be integrated over [0, r] with the 
measure c(x) dx according to 

f z:, = QAv+QAz+QBu, u(0) = @vu (8) 

R: z, = PAv+PAz+PBu, z(0) = Pw, 

I 

(9) 

y = Rz. (10) 

Since z E H ,, the homogeneous equation Rz = 0 has 
only the trivial solution z = 0. Therefore, z is deter- 
mined uniquely from equation (10) : z = R- ‘y. Sub- 
stituting z = R-‘y into equations (8) and (9), a 
reduced DS is obtained 

Af = c- ‘(if’)’ (f’ = df/dx). (6) 

The domain D(A) of A consists of absolutely 
continuous functions that satisfy the conditions 
1, f = 12f = 0, Af E H. The operator B coincides with 
the operator of multiplication by the function c-lb, 
while R coincides with the functional which simulates 
temperature measurement at the point x0 ; Y = U = R 
where R is the Euclidean space of real numbers. 

Thus, the IPs of heat conduction associated with 
the determination of the time-varying component of 
internal heat sources, are incorporated into a more 
general class of problems concerned with the inversion 
of distributed DSs. 

3. CONSTRUCTION OF AN INVERSE SYSTEM 

To construct a system which would be inverse to 
the DS a, the space of states A will be expanded into 
a direct sum 

H=H,@H, (7) 

so that the arbitrary element W, WE H, would admit 
the single representation w = v + z, v E HZ, z E H,, where 
H, is the space formed by a set of solutions of the 
homogeneous equation Rw = 0 (in other words, H2 

represents the kernel of operator R). Equation (7) 
induces the projectors P : H 4 H,, Q : H --) H2 defined 
by the equalities Pw = z, Qw = v. Using the familiar 
properties (PQ = QP = 0, P2 = P, Q ’ = 0) of pro- 
jection operators, the DS can be written in an equi- 
valent form as 

ii: 
1 

v, = QAv+QAR-‘y+QBu, v(0) = Qwo 

y,(t) = Rm’y,-PAR-‘y = PAv+PBu. 

(11) 

Under the assumption that the operator PB: U --t 
H, is invertible, the system of equations (11) yields 
the representation of an inverse DS in the space of 
states H, 

1 

v, = Q(A- B(PB) ’ PA)v 

fi~‘=fi~‘: +QAR- ‘y(t)+QB(PB) ‘y,(t) 

u(t) = -(PB) ‘PAULA ‘y,(t) 

v(0) = Qw,. (12) 

The invertibility of the operator PB is equivalent to 
that of RB and is a sufficient condition for the solution 
of IPs to be unique. Note, that in applied problems 
the operator RB is generally invertible. 

The formal construction of the system 0-l given 
above can be rigorously substantiated under certain 
additional restrictions imposed on the DS 0. Specifi- 
cally, it is sufficient to suppose [3] that the operators 
R, B, (PB)- ’ are continuous and that the operator 
PA : H -_, H, admits closure up to a continuous 
operator. 
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4. QUALITATIVE INVESTiGAl10N OF AN 
INVERSE SYSTEM 

The study of the inverse DS Sz-’ allows certain 
qualitative conclusions to be made about IPs. Thus, 
for example, the position of the spectrum of the oper- 
ator F = Q(A -B(PB)-‘PA) on a complex plane 
characterizes the dynamic properties of an inverse 
system. These properties (asymptotic stability in the 
sense of Lyapunov [lo], monotonicity of transient 
processes, etc.) are important for numerical and 
analogue solutions of IPs. 

An analytical representation of the solution for IP 
is defined in terms of the subgroup eF’ and has the 
form 

u(f) = -(PB)-‘PA 
( 

e%(O) 

where 

v*(t) = R-‘y,-PM+. 

The structure of solution (13) is such that it allows 
the recovery of the input u(t) at the rate of information 
supply about the output y(t), i.e. in a real time scale. 
The property of incorrectness, usually inherent in IPs, 
shows up in solution (13) and is due to the required 
single differentiation of the observed value of y(t). 
The second potential source of the irregularity of spec- 
ific IFS is associated with the possible instability of the 
inverse DS a-’ in the sense of Lyapunov, As is known 
[ 1 I], in this case the errors of the initial data aceumu- 
late exponentially in numerical calculations of the IP 
solution in a real time scale. 

Another aspect of the qualitative investigation of 
IFS is associated with the reduction of initial data for 
the problem. Since, according to equations (123, the 
initial state v(O) of the inverse system Sz-’ is the pro- 
jection of the initial state of the direct system onto the 
kernel of the operator R, then the condition 
v(O) = QwO should be interpreted as a reduction of 
information about w,,_ A further reduction ean be 
made by studying the observed properties of a DS.? 
In fact, if the DS is not quite observable, then, accord- 
ing to ref. 191 the homogeneous equation 

ReA’ w o=o, t>O (14) 

has a non-trivial solution w,, # 0. Let 5’ be the oper- 
ator which projects the space H onto the subspace M 

?A formal definition of the observability comes to the 
following: the DS Sz is called to be observable when the 
conditions u(t) = 0, v(t) E 0 at 1~ [O, GO] yield the equality 
w(0) = 0. At present, the concept of observability, which first 
came into being in the theory of automatic control [12], 
is fundamentally important for studying the systems of 

different origins. 

orthogonal with respect to the set of solutions 
of equation (14). M is called the reduced space of 
the DS CJ states, As is shown in ref. [9], the DS Sz 
can be written in the form equivalent to that of 
equation ( I> 

R: 
i 

w, = SAw+SBu, WEM 

y = Rw, w(0) = SW+ (15) 

Consequently, the condition w(O) = SW, eliminates 
from equation (1) the excessive jnfo~at~on about the 
initial state wO. 

Repeating the construction of the inverse system in 
application to equation (l), it can be obtained that 

v, = QS(_4 - B(PSB) - ’ PSA )v 

s-2-’ : 

1 

+QSAR-‘y(t)+ QSB~~~~~-~~~(~~ 

u(t) = -(PSB)-‘PSAV+(PSB)-‘yl(t) 

u(0) = PSW, 

where yl(t) = R- ‘yr -PSAR- ‘y, P the operator 
which projects the space M onto the space of solutions 
of the equation Rw = 0, w E M. 

Note should be taken of the specific case of DS 
R-’ when the equality PSA = 0 is fulfilled. Then, the 
expression u(t) = (PSB)-‘y,(t) can be considered as 
an explicit solution of IP. It is independent of the state 
w and, consequently, of the state w of the direct DS Sz. 
A detailed analysis of this situation and corresponding 
problems of heat conduction IPs are given in refs. [5, 
131. Another example of the heat conduction IP, the 
solution of which is independent of the initial state 
of the direct DS, is the well-known problem 1141 of 
determining the densities of heat fluxes on the body 
boundary from the measured temperatures and heat 
fluxes on its opposite boundary. 

5. RECOVERY OF INTERNAL SOURCES 

Consider the IF formulated earlier and dealing with 
the dete~inatio~ of the non-stationary component 
u(t) of an internal source. Since the operator 

s 

I 
RT- 6(x-x0) T(x, t) dx 

0 

which corresponds to the system ti [, is unbounded in 
the space &fO, I; C(X) dx)), the algorithm of structural 
factorization cannot be applied directly to the DS 51,. 
Therefore, the generalized function 6(x-x0) in 
expression (5) is approximated by rather a smooth 
function with the carrier confined in the vicinity of 
point x0* This means that the output of the DS izl 
should be described by 

i 
At) = <f+, n = 

s 
c(x)r(x) T(x, 2) dx (16) 

0 

where r(x) is rather a smooth function satisfying the 
boundary conditions E,r = I,r = 0. It is natural to call 
the quantity r(x) the weight function. 
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The set of equations (2)-(4) and (16) determine a 
DS which will be designated by the symbol R,. For 
the DS R, the space H, coincides with the one-dimen- 
sional space stretched over the weight function r, and 
the operators P, Q, PA, PB act according to 

pf = lld _ ‘r<r, f >, Qf = .f- 9f3 

s / PAJ’ = jlrllm2r r(lw,fy), dx 
0 

c ~~rll-*r s :(ir,),ldx = llrll~*r(Ar,.f) 

PBu = ~~r~l-2r(c~m ‘b, r)u = kllrli 2ru 

I 

I 
k = (cm ‘b, r) = b(x)r(x) dx (17) 

0 

where llrll = J(r, r) is the norm of the function r in 
the space &(O, Z;c(x)dx); operator A is defined by 
formula (6). 

Assuming z = y(t)r, y E R and taking into account 
relations (17)) the analogue of equations (8)-( 10) for 
the DS (2)-(4) and (16) is obtained 

v, = A~-IJrll-~r(Ar,v)+(Ar-)Ir~l~ ‘r(Ar,r))y 

+(c~~‘b-llrll~*rk)u(t) 

rj = r(llrll~2(Ar,u)+llrll~ 2(Ar,r)y+llrlle’ku) 

Y = lIrl/*Y (? = dyldt). (18) 

When k # 0, then u(t) can be determined from 
equations (18). This will yield an explicit rep- 
resentation of the inverse DS 

s 

i 
CD, = (h,), - k- ‘b (Ir,),v dx 

0 

+~,wJJ(~)+~2(x).G(~) (19) 

1,v = 12v = 0, 

s / u(x, 0) = v. = w. - llrll~ ‘r cm,, dx (20) 
0 

u(t) = -km’ (lr.),odx 

s / + llrll-2 (~r,Lrd-v(t) --b(t) (21) 
0 i 

where 

b,(x) = Ilrllm*(Ir,),--km’b 
s 

‘(lr,),dx 
0 

b,(x) = k-lb- iirll-2cr. 

Note that incorporation of a(. , t) E HZ, V t > 0 will 
result in 

(n(*,t),r)=O, Vt>O; 

(c-‘b,,r) =O, (cC’b,,r) = 0. 

In specific inverse DSs the last two equalities can be 
conveniently used to control the calculations 
of coefficients b,(x), b2(x) and the identity 
(v( *, t), r) = 0 can be used for controlling the 
numerical realization of the IP. 

Let the Green function of the boundary-value prob- 
lem, equations (19) and (20), be denoted by G(x, 5, t). 
Then, it will follow from equations (19)-(21) that the 
solution of the IP can be written in the form similar 
to that of equation (13) 

I i 
u(t)=-k ’ 

Ki 
(lr,),G(x, il, t) 

0 0 

x G(x, i’, t-t)f(<,T) dtdxdz 

where 

.f‘(4> r) = h, (5)Y(T) +h2(5)P(r). 

The Green function G will be given in terms of the 
spectral data of mutually conjugated boundary-value 
problems 

i 

pcu” = (h5v)),-k-‘b(Ar,~), 6 = tT(x,,u) 

l,d = 1,d = 0 (22) 

1 

PC+ = (hCX), - k- ‘Ar(b, @) 

I,6 = 12E = 0 (23) 

where p is the spectral parameter, and ii the conjugate- 
complex value of p, 

Introducing the following notation : 

Pl>P2>“‘,Pi,... (24) 

the spectrum of the infinitesimal operator F: 

Fz = Az- km ‘c ‘(Ar, z), ZE Hz (the set of the 
eigenvalues of problem (22) in the order of 

decreasing real Re PJ ; {c ,(x). , oi(x). . .} and 
{w,(x),. ,Wi(.X), .) are corresponding sets of 
eigenfunctions of boundary-value problems (22) 
and (23) ; (p(x,p) is the solution of the Cauchy 
problem 

(~cP~),-~ccP = 0, cp(O,p) = sina, 

n(o)cp,(o,p) = coscc; 

+(x,p) is the solution of the Cauchy problem 

By analogy with the classical Sturm-Liouville 
theory [15], it is possible to prove the following 
proposition which describes the spectral data of 
boundary-value problems (22) and (23). 
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Proposition 
(1) The spectrum of operator F coincides with the 

set of roots of the characteristic equation 

where 

x dx, 5, Mt) d5 dx 
> 

= 0 

A(p) = rp(l, p) cos B-U)rp,(l, p) sinB 

= $(O, p) cos a -n(O)$,(O, p) sin a 

g(xt 53p) = r 

rp(x, /*)11/(& p), x G r 

ti(x, /&(5, p), x > 5. 

(2) When Q,) = 0 the eigenfunctions, cor- 
responding to ,ui, of boundary-value problems (22) 
and (23) have the form 

vi(x) = i = 1, (25) 

I 

w,(x) = s o g(x, 5, SJ(hh dt, i = 1,. (26) 

To represent the Green function G in explicit form, 
note that, according to ref. [16], the set of eigen- and 
associated functions of boundary-value problem (22) 
form the Riesz basis in the space &(O,l; c(x)dx). 
Therefore, in the case of zero multiplicity of eigen- 
values (24), function G can be determined from 

G(x, tit) = ;;, (wi, ui) @‘. (27) 

Generally, when there are eigenvalues of non-zero 
multiplicity, function G can also be written in the form 
similar to that of equation (27), using for the purpose 
the eigen- and associated functions [ 161. 

6. EXAMPLE 

As an example, find the Green function for the 
inverse DS, equations (19)-(21), with constant ther- 
mophysical parameters c and 1, boundary conditions 
I, T = T(0, t) = 0, Z,T = T(Z, t) = 0, source function 
b(x)u(t) = b,u(t), 6, = const. and weight function 
r(x) = x(1-x). 

A corresponding direct DS is not observable and 
therefore, it admits the reduction of the state space. 
Proceeding just as in ref. [8], it can be easily verified 
that the reduced space of states consists of axially 
symmetric functions of the form 

T+(x, t) = 
T(x, t) + T(I- x, t) 

2 . 

The characteristic equation 

of an inverse system has only real negative roots 

4n*, 
flc,= -12~ n= 1,2,... 

where $,, n = 1, co, are positive roots of 

tg$-$- :J13 = 0 (29) 

which are arranged in order of increasing magnitude. 
The roots of equation (29) are approximated, with 

good accuracy, by the expression $,, N n(2n+ 1)/2, 
therefore p,, N 1x2(2n+ l)/I’c. Since in the present 
specific case boundary-value problems (22) and (23) 
are self-conjugate, their eigenfunctions, corres- 
ponding to the values p = p,, coincide. Calculation 
by either equation (25) or (26) shows that 

v,(x) = w,(x) = (sintiny)siny. (30) 

The normalizing factor has the form 

(a,, w,) = cl 
( 

i +;(2sin*,-sin2$,) 
n 

+2cos2$, . 
) 

(31) 

Thus, all the data required to represent the Green 
function in the form of equation (27) have been 
calculated in the explicit form of equations (28), (30) 
and (3 1). 

Since in the present example the spectrum of the 
generating operator for the inverse DS consists of 
the real negative numbers (28), the inverse system is 
asymptotically stable in the Lyapunov sense, while the 
transient processes have a monotonically decaying 
character. Also note that eigenfunctions (30) form the 
Riesz basis in the space L: (0,l; cdx) 0 r consisting 
of the functions which are symmetric with respect 
to l/2 and orthogonal with respect to the function 
r(x) = x(l-x). This is in accord with the fact that the 
space L: (0, I; c dx) 0 r can be taken as the minimal 
space of states of an inverse DS. The projection of the 
initial state To(x) onto the space L:(O,Z; cdx) 0 r 
represents the minimal amount of information about 
the initial state of the inverse DS which is necessary 
for an IP to be solved. 

Some results of a check on the numerical calculation 
of an IP at b = 1, 2 = 1, c = I,1 = 1 are presented in 
Figs. 1 and 2. An inhomogeneous integral differential 
equation, which is associated with an inverse DS, 
was solved by the finite-difference method using an 
implicit scheme. The integral term of the equation 



1554 V. T. BOIUJKHW and P. M. KOLESNKOV 

FIG. 1. Numerical simulation of inverse problems (IPs): ---- -- diagram of the function 
u(t) = 5 sin nti4 ; -, result of the function u(t) = 5 sin xfl4 recovery from the output y(r). 

FIG. 2. Numerical simulation of IPs : --, result of the recovery of the function 

Sat t~[O,2]~[4,6]~[8,10]... 
u(t) = 

0 at 1 E [2.4] u [6,8] v [lo, 121,. 

on each time layer was calculated from the solution 
obtained on the previous layer. Moreover, to increase 
the accuracy on each time layer an iteration process 
was organized which stopped at the level of the relative 
residual from the integral term of the equation. The 
differentiation of the output r(t) of a direct DS 
was made with the aid of the EC computer service 
subprogram. No special simulation was made of the 
output r(r) noising. 

The results obtained make it possible to claim that 
the proposed method for solving IPs admits stable 
numerical realization. 

7. CONCLUSIONS 

Summarizjng, it is possible to say that rather a 
general method of solution and qualitative investi- 
gation into the linear class of IFS with distributed 
parameters is suggested in the paper. 

It is useful to verify on the first stage of an IP 
investigation whether the initial system Q has the 
property of observability. If the DS R is not fully 
observable, the reduction of the space of its states is 
possible. This reduces the required volume of infor- 
mation about the initiat conditions of the problem. 

Depending on the character of an IP the con- 

struction of an inverse system may be based either on 
the algorithm of structural factorization, or the re- 
calculation of boundary-value conditions. In the 
former case, it is sometimes necessary to somewhat 
alter the initial statement of an IP. For example, the 
&function, which simulates temperature measurement 
at a point, should be replaced by an approximating 
smooth function. Note, that this replacement can be 
conveniently made taking into account the averaging 
operation of temperature probes. 

The method of inverse DSs makes it possible 
to employ, for studying the properties of IPs, the 
well-known concepts of the qualitative theory of 
differential equations. such as the quality of transi- 
tion processes, stability and instability in the sense 
of Lyapunov. Moreover, the construction of an 
inverse DS usually entails an additional reduction of 
the required volume of information about the initial 
conditions of an IP. 

After having represented the inverse system in 
the space of states, both numerical and analytical 
methods can be used for the actual solution of an IP. 
In the present work, the solution of the IP is given 
in terms of the Green function, and an example of 
numerical realization of the IP solution is given. 

The property of the IP incorrectness is displayed in 
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the analytical representation of the solution and is 
associated with the necessity for single differentiation 
of the signal measured. In the present work, the algo- 
rithm of the structural factorization is considered in 
the general situation, when the operator PB is revers- 
ible. In a degenerate case it is also possible to employ 
this algorithm 131, but then it is necessary to multiply 
differentiate the output of the original DS R. 
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APPENDIX 

Proof of the proposition 
(1) The equation @- F)z = 0, which determines the spec- 

trum (24) and the eigenfunctions of operator Fwill be written 
in the form 

(p-A)z = -k- ‘c-‘b(z, Ar), (z,r) = 0. (Al) 

First, consider the case when p# o(A). Then system (Al) 
is equivalent to the system 

z = -k-‘@-A)-‘e-‘y (A2) 

Y = <r, Ar) (A3) 

(z, r) = 0. (A4) 

If function r is the eigenfunction for operator A, then, 
according to equations (19)-(21), the inverse DS sl;’ has 
the simplest form u(t) = -k-‘(]lr]]-z(r, Ar)y-y). There- 
fore, it will be assumed that inequality Ar # ur, V p E @ is 
fulfilled and then y # 0. By substituting z from equation (A2) 
into equations (Al) and (A4) and taking into account 
the inequality y # 0, the system of equations results for the 
spectral parameter p 

k+((u-A)-‘c-‘b,Ar) = 0 

((p-A)-‘c-‘b,r) = 0. 

Using the equality k = (b, c- ‘r) and the well-known prop- 
erty (p-A)-‘z = u-‘(z+tjt-A)-‘z), VzeD(A) [9], ofthe 
linear operator resolvent, it can be easily checked that 

k+((p-A)-‘c-‘b,Ar) =u((p-A)-‘c-‘b,r). 

Consequently, the system of equations (Al) at u#o(A) is 
equivalent to 

0 = u-‘(k+((p-A)-‘c-‘b,Ar)) = ((p-A)-‘c-‘b,r). 

(‘45) 

According to the theory of the Sturn-Liouville operators 
[151 

Ol-A)-‘c-lb =& ;g(x,<,u)b(0dr. 
s 

(‘46) 

It follows directly from relations (A5) and (A6) that at 
u$a(A) the characteristic equation 001) = 0 has the form 
given in the first part of the proposition. 

Now, let USA, then AQ = 0. It follows from the last 
equality that the functions rp, I+Q can be written as 

rp(x,p) = m,Ow@,x), $(x,p) = m20L)woL,x) (A7) 

where m,(p) f 0, m*(p) f 0, w(p, x) are eigenfunctions of 
operator A corresponding to eigenvalue p. The use of equa- 
tion (A7) yields 

= -u-‘m,m,(w,Ar)(c-‘b,w). 

Thus, when 0&) = 0, then one of the equalities should be 
fulfilled 

(w,Ar) = 0, (c-lb, w) = 0. (‘48) 

On the other hand, it follows easily from the structure of 
equation (Al) and from the Fredholm alternative that. in 
the case when; E o(A), the number p enters into the spectrum 
F if and only if at least one of equalities (A8) holds. 

(2) When u#u(A), relation (25) follows from equations 
(A2) and (A6) and when p E u(A), it can be verified directly. 
An analogous method is used to prove relation (26). 
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METHODE D’INVERSION DES SYSTEMES DYNAMIQUES ET SON APPLICATION A 
LA RECUPERATION DES SOURCES INTERNES DE CHALEUR 

R&sum&-On developpe la methode d’inversion des systtmes dynamiques lineaires distribues qui fournit 
une solution analytique d’une certaine classe de problemes inverses de conduction thermique. Comme 
illustration de l’approche girnerale, on considere le probltme inverse de recuperation de la composante 

variable au tours du temps dune source interne de chaleur. 

DAS VERFAHREN DER INVERSION DYNAMISCHER SYSTEME UND SEINE 
ANWENDUNG AUF DIE ERMITTLUNG INNERER WitRMEQUELLEN 

Zusammenfassung-Das Verfahren der Inversion linear verteilter dynamischer Systeme wird entwickelt. 
Hiermit ist es miiglich, eine bestimmte Klasse inverser Warmeleitprobleme qualitativ zu untersuchen 
und analytisch zu l&en. Beispielhaft wird das allgemeine Vorgehen anhand der Ermittlung der zeitlich 

veranderlichen Komponente einer inneren Warmequelle gezeigt. 

MET0j.J OBPATHLIX fiBHAMHgECKMX CHCTEM I4 ET0 TIPHMEHEHHE JJJIcl 
BOCCTAHOBJIEHFDI BHYTPEHHHX HCTO’IHHKOB TEI-IJIA 

AmmTauun-Pa3emiaeTcfi M~TOA o6pamennn nmiekabrx pacnpenenemibrx nmiahrmrecrcrix cricreht, no3- 
BOAKIoU&Hii np090~Tb KawcTBeHHoe IiCCJleAOBaHHe H lIOJl)“iHTb aHaJUiTHWCKOe peuIeHxie OtIfEAeJl~H- 

HOrO KJIa0.x HHBepHl,IX 3iiAa'i TelIJlOlIpOBOAIiOCTH. B ICaYeCrBe SiJlJlIocTpaLnisi K o6meMy IlOJIxOAy 
PaCCMOT~Ha 06paTHaK 3aAaYa II0 BOWTaHOBAeHHiO Ei3MeHKEOUlefiCS BO BPIZMeHU KOMIlOHeHTbl BHYT- 

peHHeroncToyHHKa Tenna. 


